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Abstract

The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for

centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa

have been studied since the 1920s, comparative and systematic studies of metabolite com-

position based on different leaf maturity levels are still lacking. This study assessed the sec-

ondary metabolite composition in two different leaf stages (young and mature) of M.

speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-

mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 puta-

tively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids,

6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and

phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e.,

the most abundant class of secondary metabolites identified. As per previous reports, indole

alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate

analysis (MVA) using principal component analysis (PCA) showed a clear separation of

92.8% between the young and mature leaf samples, indicating a high variance in metabolite

levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively

identified among the many new alkaloids reported in this study, depicting the diverse biologi-

cal activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in

different leaf stages, these findings have extended the current alkaloid repository of M. spe-

ciosa for a better understanding of its pharmaceutical potential.

Introduction

The Mitragyna genus from the Rubiaceae family encompasses 10 species, of which six are

Asian and four are African. The most prevalent species in the Malay Peninsula are Mitragyna
speciosa, Mitragyna diversifolia, Mitragyna hirsuta, Mitragyna parvifolia, Mitragyna rotundifo-
lia, and Mitragyna tubulosa, which are known to contain indole alkaloids with
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pharmacological properties [1,2]. Among the species, M. speciosa has the most documented

narcotic properties as an opium substitute with controversial debate on its legal usage and

potential abuse. Furthermore, it is easily obtained through the internet in many Western coun-

tries like the United Kingdom (UK) and the United States (US) [3–5] and certain Asian coun-

tries like Japan [3,6]. M. speciosa is widely grown in Southeast Asian nations such as Indonesia,

Malaysia, and Thailand, mostly for its leaves [7,8]. Indonesia is known to cultivate M. speciosa
for global exportation, especially to Europe and North America [9,10]. In Malaysia, the trees of

M. speciosa are often grown by villagers in their backyards for consumption [11,12]. It is gener-

ally known as kratom in Thailand and ketum or biak-biak in Malaysia. The fresh mature leaves

of M. speciosa have been traditionally utilised for therapeutic purposes [13] by chewing or con-

sumed as tea for stimulating effects that increase energy and work productivity [11,14,15]. It is

also widely used in Southeast Asian countries as an aphrodisiac, to improve blood circulation,

to endure physical fatigue, and to treat diarrhoea, fever, diabetes, chronic pain, and opiate

withdrawal syndrome [12,15–19]. The leaf extracts of M. speciosa have been reported to show

various biological activities, including antibacterial, antioxidant [20], antimutagenic [21], anti-

inflammatory [22], antitussive [23], anaesthetic [24], antipsychotic [25], and antinociceptive

[22,26,27] effects. These pharmacological actions are mostly linked to alkaloids in the extracts.

However, the pharmacological and safety profiles of M. speciosa remain poorly understood

and warrant further investigations [11].

To date, at least 58 alkaloids have been reported in different plant organs (leaf, bark, stem

bark, stem, root, fruit, etc.), since the 1920s (S1 Table). Mitragynine (MG) was the first alkaloid

to be isolated [28], followed by mitraspecine [29], and the rest were identified between 1963 to

2020. Most pharmacological studies of M. speciosa constituents have been extensively focused

on MG and 7-hydroxymitragynine (7-OHMG), known as opioid antinociceptive agents [30–

32]. MG and 7-OHMG function as partial agonists of the human mu (μ)-opioid receptor,

which also acts on kappa (κ)- and delta (δ)-opioid receptors as competitive antagonists

[33,34]. 7-OHMG was shown to be 46- and 13-fold more potent than MG and morphine,

exhibiting greater affinity for the μ-opioid receptor [35]. Moreover, 7-OHMG was proposed to

pose a higher risk of addiction and toxicity with M. speciosa consumption [36,37].

Previous investigations on the distribution of indole and oxindole alkaloids in M. speciosa
using thin-layer chromatography (TLC) have shown that the occurrence and abundance of

alkaloids vary between young plants and old trees, different organs (leaf, twig, stem bark, and

root bark), as well as locality and time of collection [38–40]. Other factors that influence the

variability in M. speciosa constituents are environmental factors [41], variety [42], and leaf

maturity [43]. However, Houghton et al. [43] collected the young and mature leaf samples

from different geographical areas of Malaysia; young leaves were collected from trees grown in

Selangor, whereas mature leaves were collected from Perlis. Four isolated alkaloids, mitragyna-

line, corynantheidinaline, mitragynalinic acid, and corynantheidinalinic acid, were more

abundant in young leaves, with a minute amount in mature leaves [43]. Furthermore, many

other studies focused on investigating the alkaloids in either mature leaves [44–46], commer-

cial products [47,48], or leaf samples of unspecified age [7,49,50]. Although biochemical and

physiological characteristics between young and mature leaves generally vary [51–55], system-

atic comparison studies on the influence of different leaf stages on metabolite composition and

abundance are limited. As the constituents of M. speciosa can also vary geographically and

with sampling time [39], it is necessary to conduct sampling at the same locality and time

point. In this study, a systematic study was employed using an untargeted metabolomics

approach of liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry

(LC-ESI-TOF-MS) to compare the composition and abundance of secondary metabolites in

the young and mature leaves of M. speciosa.
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To date, only a few targeted indole and oxindole alkaloids were already isolated and charac-

terised from M. speciosa. Enhanced metabolite identifications using nuclear magnetic reso-

nance (NMR) [7,47,49], gas chromatography-mass spectrometry (GC-MS) [42,56,57], high-

performance liquid chromatography (HPLC) [42], and liquid chromatography-mass spec-

trometry (LC-MS) [50,57,58] were performed on M. speciosa leaf samples from various loca-

tions, with the isolated and characterised metabolites mostly targeted. Phytochemical

characterisation of M. speciosa leaves was conducted using NMR and TLC, which isolated 18

compounds [41] without distinguishing different leaf tissues. At the current stage, apart from

the targeted metabolites, a complete metabolite profile of the plant is yet to be studied. On this

basis, untargeted metabolite profiling using LC-ESI-MS serves as a practical tool for finding

bioactive compounds by analysing the metabolites in plant extracts and linking them to their

biological activities [59,60]. Only one untargeted LC-MS metabolomics was employed recently

to profile 53 commercial kratom products in the US to determine alkaloid variations, followed

by targeted studies of MG, 7-OHMG, and speciofoline with in vitro evaluation of their biologi-

cal effects [48]. However, annotation of all the overall metabolites was not reported. To our

knowledge, this study presents the first systematic metabolite profiling and comparative analy-

sis of young and mature M. speciosa leaves. The findings will substantially enhance existing

knowledge of M. speciosa leaves and set the groundwork for subsequent research on this plant.

Materials and methods

Chemicals and reagents

Analytical-grade methanol (CH3OH) was acquired from Merck, Germany, while umbellifer-

one (C9H6O3, purity 99%) was acquired from Sigma-Aldrich, St. Louis, USA. Deionised water

was filtered using the Milli-Q Reagent Water System (Millipore Billerica, MA, USA). Mitragy-

nine (C23H30N2O4, purity� 95%) and 7-hydroxymitragynine (C23H30N2O5, purity 97.9%) ref-

erence standards were obtained from Cayman Chemical (Ann Arbor, Michigan, USA) and

Cerilliant (Round Rock, Texas, USA).

Plant materials

Young (freshly expanding top two leaves from the shoot tip) and mature (seventh to tenth

leaves from the top) leaves (S1 Fig) were obtained from the Centre for Drug Research (CDR),

Universiti Sains Malaysia (USM), Penang. The leaves were collected from the same tree at the

same time point at Kuala Kedah. The plant was identified by Dr Farah Alia, from Universiti

Sains Malaysia (USM), and a voucher specimen number 11869 was deposited at the herbarium

of the School of Biological Sciences, USM. The authentication of plant material is included in

the supplementary materials, and the results are summarised in the S1 Text. The leaves of M.

speciosa were flash-frozen using liquid nitrogen and kept in a -80˚C freezer for metabolite

extractions.

Metabolite extraction

Sample extraction was performed as previously described [61]. The leaves were individually

pulverised in liquid nitrogen with mortar and pestle prior to weighing and put into separate

Falcon tubes. About 100 mg of powdered samples were immersed in freshly made ice-cold

methanol (5mL), vortexed, and incubated for 8 hours on dry ice before overnight incubation

in a high-capacity incubator shaker at 20˚C. The mixture was centrifuged at 4˚C and 6,000

rpm for 10 min. Next, a 0.2-μm polytetrafluoroethylene (PTFE) syringe filter was used to filter

the supernatant. To prevent degradation, 1 mL of the extract was pipetted into vials and kept
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in a -80˚C freezer. Later, the extracts were spiked with an internal standard (100 ppm of

umbelliferone) before LC-MS analysis [61]. An internal standard is crucial in metabolite pro-

filing studies because it serves as a reference for relative quantification and validation of chro-

matographic and MS system performance [62–64]. Pooled young (2–3 leaves) and individual

mature leaf samples were used to prepare five biological and five technical replicates.

LC-ESI-TOF-MS analysis

A Thermo Scientific C18 column (AcclaimTM Polar Advantage II, 3 × 150 mm, 3 μm particle

size) on an Ultimate UHPLC system (Dionex) was used to perform chromatographic separa-

tion of M. speciosa leaf extracts as described previously [61]. Gradient elution with mobile

phases of 0.1% formic acid in water (A) and 100% acetonitrile (ACN, B) was performed at

40˚C with a flow rate of 0.4 mL/min. The total run time was 15 min. A sample injection vol-

ume of 1 μL was used, and the gradient was initiated at 5% solvent B (0–0.5 min), increased to

90% solvent B (0.5–6 min) and maintained at 90% solvent B (6–10 min). The gradient was

then returned to 5% solvent B (10–12 min) and finally maintained at 5% solvent B (12–15

min). A MicroTOF-Q III Bruker Daltonics was used to perform high-resolution mass spec-

trometry in positive ionisation mode with electrospray ionisation (ESI) source settings of

4,500 V capillary voltage, 1.2 bar of nebuliser pressure, 8 L/min of drying gas flow rate at

200˚C, and mass range of scan spectra from 50 to 1000 m/z.

MS/MS analysis for young and mature leaf samples of M. speciosa was done according to

Rosli et al. [62] by pooling replicates of all extracts at equal amounts. Tandem mass spectra

were acquired in Auto-MS/MS and multiple reaction monitoring (MRM) mode to facilitate

compound identification.

LC-MS data processing

The LC-MS raw data was processed as described by Veeramohan et al. [61] using Bruker Com-

pass DataAnalysis version 4.1 (Bruker Daltonic GmbH) for peak detection and deconvolution

of the total ion current chromatogram (TIC). This subsequently generated a list of retention

time (RT) to mass per charge ratio (m/z) peaks linked to the detected compounds and intensity

values via Find Molecular Features (FMF) algorithm [65]. The processed data was then aligned

using Bruker Compass ProfileAnalysis version 2.1 (Bruker Daltonic, Germany) for bucket gen-

eration. Next, the generated dataset was tabulated and changed to.xlsx and.csv formats for sub-

sequent analysis. Each bucket (peak) in the table represents a metabolite feature (RT:m/z

value; m/z value up to three decimal places as default setting by the software), representing a

metabolite. Data filtering was conducted by filtering out metabolite features that are not pres-

ent in at least 50% of the samples in at least one leaf age group. Missing intensity values for sev-

eral features in the dataset were manually added via manual peak picking. Furthermore,

metabolite features with a coefficient of variation (CV) of> 30% in both leaf age groups were

filtered out before metabolite profiling, relative quantification, and statistical analysis to mini-

mise intensity value variation between technical replicates.

For the Auto-MS/MS data, raw data were analysed using DataAnalysis Viewer 4.2 (Bruker

Daltonics) to visualise the fragmentation pattern of each RT:m/z value pairs detected. Targeted

metabolite features were subjected to MRM mode to obtain their fragmentation profiles. The

acquisition parameters of the targeted metabolites are shown in S2 Table.

Identification of metabolites

The RT:m/z values detected in at least three out of five biological replicates in either group

were selected for annotation. Metabolite identification for LC-MS data was attained by
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employing searches based on mass (m/z values), followed by manual verification similar to

Rosli et al. [62], with some modifications. The m/z values were looked up in previous studies

and online databases, such as METLIN [66], MetFrag [67], MassBank [68], and KNApSAcK

[69]. All metabolite annotations were based on only protonated molecule ions of [M+H]+.

Metabolites from the Auto-MS/MS and MRM data were identified based on the m/z value, RT

in min, molecular formula, and fragmentation profiles. Since several metabolite databases

were searched to identify candidates, isomeric features may match numerous candidates [70].

Hence, only metabolites with molecular weights within a 20 ppm mass error of the query m/z

value were acquired and annotated from the databases [62] to decrease the number of candi-

dates and increase the confidence in identification. Although these databases help with annota-

tions, it is not always possible to narrow down the results of an observed metabolite feature to

a single candidate. Therefore, multiple annotations are provided for such metabolite features

in this manuscript. Additionally, the identities of MG and 7-OHMG were validated with

authentic standards. Chromatograms of MG and 7-OHMG are shown in S2 Fig.

The level of identification (ID level) for the metabolites identified in this study was deter-

mined according to the criteria previously disclosed with some changes [71,72]. Level 1 was

attributed to the metabolites validated with authentic standards, whereas level 2 was

assigned to putatively identified metabolites with fragmentation profiles. Level 3 was

assigned to putatively identified metabolites using parent ions due to the absence of frag-

mentation profiles. Exact m/z values (up to 4 decimal places) were reported for metabolite

features identified with levels 1 and 2, while m/z values up to 3 decimal places (as a default

setting by ProfileAnalysis software) were reported for metabolite features annotated with

level 3 identification.

Statistical analyses and relative quantification

MetaboAnalyst 5.0 [73] was used for peak intensity data normalisation by reference feature

(internal standard), log transformation, and Pareto scaling, along with statistical analysis (fold

change analysis [|Log2FC|> 2] and t-test [false discovery rate (FDR)-adjusted p-

value < 0.05]). FDR correction was automatically done in MetaboAnalyst 5.0. Normalisation

by reference feature was caried out to account for systematic variations between samples. Log

transformation and Pareto scaling were applied to reduce high variations of intensity values

between metabolite features. Multivariate analysis by unsupervised PCA and supervised partial

least squares discriminant analysis (PLS-DA) was executed via SIMCA-P 14.1 (Umetrics, Swe-

den) using the normalised data generated by MetaboAnalyst 5.0. Metabolites were further

organised according to their significance in projecting the variations in the PLS-DA model.

Metabolites that significantly contribute to the discrimination of young and mature leaf groups

were shown to have variable importance in the projection (VIP) values > 1.0. The Venn dia-

gram was created using an online application (http://bioinformatics.psb.ugent.be/webtools/

Venn/).

The relative abundance of metabolites was calculated using a semi-quantitative method

[74,75]. The signal intensities of each putative metabolite were divided by the signal intensity

values of the spiked internal standard (umbelliferone, 100 mg/L) from each biological and

technical replicate. Means were calculated from each sample replicate and denoted as relative

abundance. A heatmap denoting the relative abundance of putatively identified metabolites

across young and mature leaves of M. speciosa was generated using MetaboAnalyst 5.0 [73].

The comparative relative abundance of each putatively identified indole alkaloid was graphed

using GraphPad Prism 7 (GraphPad Software, Inc.). The mean for each group with standard

error of the mean (SEM) was displayed in each graph.
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Results

Overall metabolites in M. speciosa
Untargeted LC-ESI-TOF-MS profiling was performed to obtain metabolite features (RT:m/z

values) corresponding to various compounds in young and mature leaves of M. speciosa. The

predominant ion was the molecular ion ([M+H]+, m/z 399.2286) of alkaloid MG (Fig 1).

The metabolites of the young and mature M. speciosa leaves were putatively identified using

LC-ESI-TOF-MS, tandem mass spectrometry, previous studies, and online databases. The

results revealed a total of 86 metabolites putatively identified in young and mature leaves of M.

speciosa (S3 and S4 Tables). They were further categorised into different classes of secondary

metabolites, including 63 alkaloids (S3 Table) and 23 other secondary metabolites consisting

of a carboxylic acid, a glucoside, a phenol, 3 phenylpropanoids, 6 terpenoids, 10 flavonoids,

and a phenolic aldehyde (S4 Table). Alkaloids make up most of the total metabolites in M. spe-
ciosa, followed by flavonoids and terpenoids.

The Venn diagram illustrates the uniqueness and overlapping of the overall identified metab-

olite features among young and mature leaves of M. speciosa (Fig 2). Both young and matured

leaves shared high similarity (76 metabolites) in the metabolite profiles. Five metabolites are

only found in young leaves, while another five metabolites are uniquely present in mature leaves

(Fig 2). The five metabolites uniquely present in young leaves include four alkaloids and one ter-

penoid, while the five exclusively present in mature leaves include four alkaloids and one flavo-

noid. The distribution of each metabolite feature can be found in S3 and S4 Tables.

Metabolomics revealed differences in metabolite composition between

young and mature leaves of M. speciosa
To analyse the differences in metabolite composition between young and mature leaves, the

normalised data matrices acquired from the LC-ESI-TOF-MS analysis were subjected to

MVA. With each point denoting a distinct sample, an unsupervised PCA displays the projec-

tions of each sample in a multidimensional space. The differences in metabolite compositions

are connected to the sample dispersions, and samples with greater similarities are located

together, while samples with greater differences are located farther away [62]. A score plot

clusters samples according to their metabolite composition, whereas a loading plot represents

the metabolites contributing to the variances amongst samples on the score plot [76]. The

PCA score plot in Fig 3A shows that the young (Y1–Y5) and mature (M1–M5) groups formed

discrete clusters, separated from one another with a total variance (R2X[cumulative] and Q2

[cumulative]) of 92.8% and 87.9%.

A supervised PLS-DA was used to identify metabolite features that vary significantly

between young and mature leaves. The PLS-DA score plot shows that the difference between

young and mature leaf metabolome was separated with a good fit of R2X(cumulative) of

92.8%, R2Y(cumulative) of 99.7%, and Q2(cumulative) of 99.4% (Fig 3B). The PLS-DA loading

scatter plot (Fig 3C) shows the distribution of metabolite features corresponding to the separa-

tion of the leaf samples in the PLS-DA score scatter plot (Fig 3B), where the metabolites pro-

jected further from the centre contribute more to the separation. Subsequently, variable

importance in projection (VIP) scores were used to identify metabolite features contributing

to the discrimination between young and mature leaf samples. A total of 34 metabolite features

with VIP > 1.0 were identified and included in the S3 and S4 Tables. Metabolites with the

greatest influence include 11-methoxy-vinorine (alkaloid), vomicine (alkaloid), hirsuteine

(alkaloid), 500-O-β-D-glucosylpyridoxine (glucoside), and 3-methoxytyramine-betaxanthine

(phenol).
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Fig 1. The representative base peak chromatograms (BPC) of young (A) and mature (B) M. speciosa leaf methanol extract obtained by LC-ESI-TOF-MS. Peak

numbering designates the identified compounds.

https://doi.org/10.1371/journal.pone.0283147.g001
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Additionally, a heatmap is used to visualise the metabolite expression of all 86 metabolite fea-

tures annotated to their respective secondary metabolite classes (Fig 4). The heatmap demon-

strates varying expression levels of metabolites between young (Y1–Y5) and mature (M1–M5)

leaves. Most secondary metabolites, including alkaloids, carboxylic acid, flavonoids, glucoside,

phenol, phenolic aldehyde, phenylpropanoids, and terpenoids in M. speciosa showed higher

expression in mature leaves (up-regulation) compared to the young ones. Conversely, 26 metabo-

lite features annotated as alkaloids, a phenylpropanoid, and 2 terpenoids were observed to show

higher expression in young leaves (down-regulation) compared to the mature leaves (Fig 4).

M. speciosa leaves contain alkaloids of various subclasses

A total of 57 annotated alkaloid features were further categorised into 14 subclasses, i.e., indole,

quinoline, isoquinoline, quinolizidine, quinazoline, terpenoid, cyclopeptide, peptide, harmala,

phenanthridine, piperamide, piperidine, purine, and pyrazine alkaloids. Meanwhile, six

metabolite features were categorised as unclassified due to several annotation hits from differ-

ent alkaloid subclasses for similar metabolite features. For example, the metabolite feature m/z

225.195 at RT 7.77 is annotated to anapheline (piperidine alkaloid) and cuscohygrine (pyrroli-

dine alkaloid), with the same mass error (Δppm -5.1; S3 Table). Indole alkaloids are the major

subclass, with 30 metabolite features putatively identified (ID level 2 and 3) and 2 metabolite

features validated with authentic standards (ID level 1), i.e., MG and 7-OHMG (S2 Fig), fol-

lowed by 6 isoquinolines, 4 quinolines, 3 piperidines, 2 metabolite features in each subclass of

cyclopeptides and purines, 1 metabolite feature in the other remaining subclasses, and 6

unclassified alkaloids (S3 Table). It is noteworthy that most of these alkaloid subclasses have

not been reported in M. speciosa thus far. These results putatively revealed 46 more alkaloids

than the previously reported list (S1 Table) (14 alkaloids putatively identified with ID level 2

and 32 alkaloids annotated with ID level 3). From the 58 alkaloids previously reported in M.

speciosa, 17 metabolite features in this study are annotated to the known indole alkaloids (MG,

7-OHMG, speciogynine, corynantheidine, paynantheine, isopaynantheine, speciociliatine, and

Fig 2. Venn diagram representing the number of overall identified metabolite features shared between or unique

to young and mature leaves of M. speciosa.

https://doi.org/10.1371/journal.pone.0283147.g002
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ajmalicine) and oxindole alkaloids (mitraphylline, isomitraphylline, rynchophylline, isorynch-

ophylline, corynoxine, corynoxine B, speciofoline, isospeciofoleine, and javaphylline) of M.

speciosa (S3 Table).

Differential expression and abundance of alkaloids found in young and

mature leaves of M. speciosa
Since the pharmacological actions of M. speciosa are associated with alkaloids, their expression

in young and mature leaves was further assessed. Of the 63 putatively identified alkaloids, 38

are significantly (FDR< 0.05) different (S3 Table). Fold change (FC) analysis revealed 22 sig-

nificantly different (|Log2FC|> 2) alkaloids between young and mature leaves, with 14 and 8

alkaloids exhibiting at least 4-fold higher expressions in young and mature leaves (Table 1).

Fig 3. Multivariate analysis of M. speciosa’s metabolite profile. (A) PCA score scatter plot of young (lime green) and

mature (dark green) leaves in five biological replicates. Circles are labelled relative to the leaf age groups. (B) PLS-DA

score scatter plot of young and mature leaves in five biological replicates. Circles are labelled relative to the leaf age

groups. (C) PLS-DA loading scatter plot projecting metabolite features that influenced the clustering and separation of

young and mature leaf groups.

https://doi.org/10.1371/journal.pone.0283147.g003
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The relative abundance of alkaloids quantified in M. speciosa is tabulated according to their

respective subclasses to compare their expression in young and mature leaves (S3 Table).

According to the heatmap, most annotated alkaloids of various subclasses are more abundant

in mature leaves than in young leaves (Fig 4). Many alkaloids of M. speciosa belonging to the

isoquinoline, cyclopeptide, harmala, piperidine, terpenoid, peptide, phenanthridine, pyrazine,

and quinolizidine subclasses are more abundant in the mature leaves, whereas alkaloids from

the indole, quinoline, piperamide, and quinazoline subclasses are more abundant in the young

leaves. Meanwhile, two purine alkaloids showed similar abundance in young and mature

leaves (S3 Table and Fig 5).

Since indoles are the most prominent category of alkaloids in M. speciosa, further compari-

sons were focused on these compounds (Fig 6). Among the 32 annotated indole alkaloids, 13

are significantly more abundant in young leaves, while 3 are more abundant in mature leaves

(S3 Table and Fig 6). Interestingly, two of the most studied indole alkaloids of M. speciosa, MG

Fig 4. Heatmap showing the relative abundance of 86 metabolite features [RT(min):m/z] in young and mature leaves of M. speciosa. The scale bar

of the heatmap indicates the relative abundance of the annotated metabolite features, with the lighter green colour representing lower intensity and the

brighter red colour representing higher intensity. Annotation of each metabolite feature can be found in the S3 and S4 Tables.

https://doi.org/10.1371/journal.pone.0283147.g004
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and its derivative, 7-OHMG, showed a higher expression in mature leaves than young leaves.

Relative quantification analysis showed that MG is 1.2-fold higher in mature leaves than

young leaves, while 7-OHMG is 3.3-fold higher in mature leaves (S3 Table and Fig 6).

Discussion

Untargeted metabolite profiling of M. speciosa leaves using

LC-ESI-TOF-MS

Untargeted metabolomics provides comprehensive and unbiased qualitative and quantitative

analyses of each metabolite in an organism [77]. LC-MS is a typical approach for analysing a

wide spectrum of plant metabolites in untargeted metabolomics [62,78–81]. Additionally, the

Table 1. Identification of important features by statistical analysis of fold change upon comparing alkaloid expression between young and mature leaves.

No. RT:m/z Metabolite Alkaloid subclass Log2(FC)

1 8.53min:381.1808m/z Vomicine Indole -8.0

2 5.34min:365.1858m/z 11-Methoxy-vinorine Indole -7.3

3 8.38min:351.171m/z Perakine/

vomilenine/

polyneuridine aldehyde/

19-epi-cathenamine/

cathenamine

Indole -6.6

4 5.39min:367.2031m/z Hirsuteine Indole -6.0

5 8.53min:349.1558m/z Alstonine Indole -4.5

6 5.18min:243.0857m/z Lumichrome Pyrazine 3.8

7 5.21min:385.2113m/z Rynchophylline Indole -3.4

8 5.31min:383.196m/z Akuammine/

aricine/

cabucine/

lochnerinine

Indole -3.4

9 4.90min:531.2313m/z 3-α(S)-Strictosidine Indole -3.1

10 5.55min:395.196m/z Brucine Indole -3.1

11 4.91min:413.205m/z (-)-Alstolucine A Indole 3.1

12 5.18min:399.229m/z Speciogynine Indole 3.0

13 1.94min:130.087m/z L-Pipecolic acid/

D-pipecolic acid

Piperidine -2.9

14 4.22min:161.1076m/z Tryptamine Indole -2.8

15 1.78min:181.071m/z Theophylline/

theobromine/

paraxanthine

Purine 2.8

16 1.84min:322.147m/z Acronycine/

2-[4-(3,4-Methylenedioxyphenyl)butyl]-4(1H)-quinolinone

Unclassified 2.8

17 4.53min:372.1430m/z (+)-N-(methoxycarbonyl)-N-norboldine Isoquinoline 2.8

18 5.35min:353.185m/z Ajmalicine Indole -2.7

19 2.10min:261.084m/z 1,2,3,4-Tetrahydro-β-carboline-1,3-dicarboxylic acid Harmala 2.7

20 5.31min:369.2198m/z Corynantheidine Indole -2.6

21 4.57min:369.180m/z Mitraphylline/

isomitraphylline/

strictosidine aglycone/

horhammericine/

dialdehyde

Indole 2.5

22 4.87min:353.1839m/z Akuammidine Indole -2.3

Alkaloids are deemed significant with a |Log2FC| > 2.

https://doi.org/10.1371/journal.pone.0283147.t001
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combination of LC and ESI-TOF-MS in this investigation improves mass accuracy, allowing

for faster metabolite identification and quantification [62,81,82]. Recent untargeted metabolo-

mics followed by a targeted quantification study of M. speciosa profiled 53 commercial kratom

products. Compound identification was only focused on three targeted alkaloids, hampering

the identification of other potentially bioactive compounds [48].

In this study, we focused on untargeted metabolite profiling to explore the secondary

metabolite composition in the young and mature leaves of M. speciosa. Metabolite annotation

was manually conducted using mass-based (m/z values) searches against several online data-

bases and putatively identified 86 metabolites, of which 2 were identified using authentic stan-

dards (ID level 1), 39 were successfully identified using MS/MS data (ID level 2), and 45

annotated using MS data (ID level 3). In addition to alkaloids, 23 other secondary metabolites

are categorised into flavonoids, terpenoids, and phenylpropanoids, while the rest comprises a

carboxylic acid, a glucoside, a phenol, and a phenolic aldehyde (S3 and S4 Tables). Previously,

León et al. [41] isolated and identified 10 other phytochemicals on top of 8 known M. speciosa
alkaloids. The 10 phytochemicals isolated comprise a flavonoid, a saponin, two triterpenoid

saponins, two monoaryl glycosides, and two cyclohexanone glycosides [41]. Several years later,

Charoonratana et al. [83] determined the metabolite profiles in M. speciosa via NMR and

HPLC analyses to identify the metabolites involved in the biosynthesis of MG. Besides MG, 15

metabolites were identified, including flavonoids, iridoids, triterpenes, organic acids, phenolic

acids, amino acids, and sugar [83]. In our study, only two previously reported compounds, epi-

catechin (flavonoid) (ID level 2) and secologanin (terpenoid) (ID level 3), were annotated. The

rest of the 21 secondary metabolites are reported for the first time in M. speciosa (20 metabo-

lites putatively identified with ID level 2 and 1 metabolite annotated with ID level 3) (S4

Table). These metabolite annotations are only putative due to inadequate data on M. speciosa
metabolites in public databases. Due to the various acquisition of metabolic data with different

analytical instruments and methods, a complete spectral database for LC-MS is nearly

Fig 5. Bar chart representing the distribution of 63 annotated alkaloid features categorised to their respective

subclasses. Alkaloid subclasses with a higher abundance in young leaves are coloured blue, while subclasses with a

higher abundance in mature leaves are coloured red.

https://doi.org/10.1371/journal.pone.0283147.g005
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unfeasible [62,70,84,85]. Nonetheless, a comprehensive metabolite profiling reported in the

present study grants a future search of more potential metabolites in the plant.

Variation of secondary metabolites between young and mature leaves

Various findings have shown that the composition of secondary metabolites differs in young

and mature leaves [52,54,55,77,86]. Recent studies have found that Gingko biloba L. [52] and

sugarcane [55] contain higher secondary metabolites in older leaves than in immature leaves.

However, the younger leaves of Melicope ptelefolia [77] and Inga trees [87] had higher concen-

trations of secondary metabolites than mature leaves. Thus, secondary metabolite expressions

in young and mature leaves differ between species. Previous research on M. speciosa mostly

involved targeted isolations and structural elucidation of alkaloids. Initial investigations on the

young and mature leaves of M. speciosa collected from different geographical regions isolated

and revealed only four alkaloids with a higher abundance in young leaves than mature leaves

Fig 6. Relative abundance of 32 indole alkaloids putatively identified in young and mature leaves of M. speciosa. Relative intensity values for all indole

alkaloids are provided in the S3 Table. Asterisks (�) indicate highly differential metabolites (� FDR< 0.05, |Log2FC|> 2). The graphs are arranged in

alphabetical order. RT:m/z values are provided instead of compound names for metabolite features annotated to more than one compound, which can be

referred to in the S3 Table.

https://doi.org/10.1371/journal.pone.0283147.g006
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using TLC examination [43]. A recent study on Malaysian M. speciosa leaves published targeted

isolations of 10 indole and oxindole alkaloids and profiled the alkaloids of leaves gathered from

various locations in the northern states [7]. However, the study of expression levels of many

other secondary metabolites, including alkaloids, in young and mature leaves is lacking.

In this study, various secondary metabolites in the young and mature leaves of M. speciosa
were comprehensively compared using untargeted metabolomics. Overall, the multivariate

analysis showed that leaf age is a vital separating factor that led to clear discrimination among

young and mature leaves collected from the same tree at the same time point (Fig 3). Our

study also found that mature M. speciosa leaves expressed higher levels of secondary metabo-

lites than young leaves (Fig 4), further indicating that metabolites are distributed differently in

the young and mature leaves of the same tree. Furthermore, many alkaloids of M. speciosa
belonging to various subclasses are more abundant in mature leaves than young leaves (Fig 5),

implying that the concentrations of these metabolites increased with age. Most alkaloids are

toxic and are typically distributed in sections of plants most threatened by the attacks of herbi-

vores, insects, and/or microorganisms [88–90]. Generally, susceptible organs and tissues like

seeds, plantlets, buds, and young leaves require more protection than aged ones; hence, more

defence substances are synthesised or sequestered [90,91]. However, the distribution of alka-

loids as defensive substances among young and mature leaves follows different trends in herbs

and trees. A “phenological defence” is given to simultaneously occurring flushes of new leaves

in trees, so there is more toxin accumulation in mature leaves because of the protection needed

by mature leaves until fresh shoots of young leaves are formed [90,92]. Some metabolites are

only found in either young or mature leaves; the diversity found among these specific metabo-

lites in leaves of different maturity presumably reflects the evolution of metabolites towards

various roles during leaf growth.

On the other hand, apart from a few key indole alkaloids in M. speciosa like MG and its

derivative 7-OHMG that showed higher abundance in mature leaves, most of the putatively

identified indole alkaloids in M. speciosa, such as corynantheidine, hirsuteine, rynchophylline,

vomicine, tryptamine, and 3-α(S)-strictosidine among others, are significantly abundant in

young leaves than mature leaves (Fig 6), implying that these indole alkaloids are highly synthe-

sised in young leaves. Similar findings were observed on several indole alkaloid-producing

plants, i.e., Camptotheca acuminata, Catharanthus roseus, Rauvolfia serpentina, and Uncaria
tomentosa [93–97]. A previous study suggested that indole alkaloids found to be significantly

abundant in young M. speciosa leaves may be the precursors of mitragynine and its derivatives

[43]. Indole and oxindole alkaloids are usually produced via complex and divergent enzymatic

steps of the monoterpenoid indole alkaloid (MIA) biosynthesis pathway [7]. The MIA biosyn-

thesis is generally initiated with the condensation of the key precursor, 3-α(S)-strictosidine,

from tryptamine (indole precursor) and secologanin (terpenoid precursor), catalysed by stric-
tosidine synthase (STR) [98,99]. Two of the important MIA biosynthesis precursors, trypt-

amine and 3-α(S)-strictosidine, annotated in this study, are significantly greater in young

leaves (Fig 6), further supporting the hypothesis of Houghton et al. [43]. Therefore, this study

also identifies possible intermediates of the missing steps in the MIA pathway of M. speciosa.

In short, our metabolomics analysis has provided insights into the different compositions of

secondary metabolites in the young and mature leaves of M. speciosa.

It is also important to mention that the major obstacle faced during the identification of M.

speciosa alkaloids was due to the chemical similarity of the indole and oxindole alkaloids and

their small differences in molecular weights [100]. Often, MS/MS data are insufficient to dis-

tinguish structural and stereoisomers [70]. Hence, further validation of the potential indole

and oxindole alkaloids using authentic standards or NMR is needed to support the current

observation.
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New putatively identified secondary metabolites show broader therapeutic

potentials of M. speciosa
Despite the wide consumption of M. speciosa in Southeast Asian countries for health and well-

being, studies to assess the complete spectrum of biological activities in M. speciosa are still

lacking. Several studies deduced that the methanol extracts of M. speciosa contain a mixture of

compounds that possibly share similar pharmacological activities, e.g., muscle relaxation [101]

and antidiabetic activity [102], to be more effective or potent than a single compound like MG.

Through our untargeted metabolomics analysis, several unreported alkaloids that are probable

contributors to the known and unknown medicinal properties of M. speciosa are shortlisted

(Table 2). Fold change analysis identified three alkaloids (vomicine, hirsuteine, and alstonine)

among the top ten most significant alkaloids. Vomicine isolated from the seeds of Strychnos
nux-vomica exhibited anti-diabetic activity in albino rats [103]. Hirsuteine isolated from

Uncaria sinensis showed neuroprotective activity in rats via Ca2+ influx suppression [104].

Likewise, alstonine, commonly found in the Apocynaceae plant family, showed antimutagenic

properties in mice bearing YC8 lymphoma cells and Ehrlich ascitic carcinoma cells [105].

Table 2. Newly identified alkaloids of M. speciosa and their biological significance.

Compounds Molecular Formula Biological activity Reference

Indole alkaloids

�Akuammidine C21H24N2O3 Anti-asthmatic

Anti-inflammatory

Analgesic

Antitussive

Antidepressant

[107]

[108]

[109]

[110]

�Alstonine C21H20N2O3 Antipsychotic

Anticancer

[106,111]

[105]

�Hirsuteine C22H26N2O3 Neuroprotective [104]

�Tryptamine C10H12N2 Neurotransmitter & neuromodulator

Vasoconstrictor & vasodilator

Antimicrobial & antibacterial

Antioxidant & antifungal agents

[112]

�Vomicine C22H24N2O4 Antidiabetic [103]

Yohimbine C21H26N2O3 Aids weight loss

Aphrodisiac (love drug)

Mydriatics (induces dilation of the pupil)

Antidiabetic

Antifungal

[113]

[114]

[115]

Pyrroloindole alkaloid

Eseramine C16H22N4O3 Anticholinesterase [116]

Isoquinoline alkaloids

�(+)-N-(methoxycarbonyl)-N-norboldine C20H21NO6 Antimicrobial agent [117]

Quinazoline alkaloids

Vasicinol C11H12N2O2 Anticholinesterase [118]

Terpenoid alkaloids

Daphniphylline C32H49NO5 Central nervous system depressant [119]

Piperidine alkaloids

Prosopinine C18H35NO3 Sedative [120]

Purine alkaloids

Caffeine C8H10N4O2 Stimulant [121]

Asterisks (�) indicate highly differential metabolites (FDR < 0.05, |Log2FC| > 2).

https://doi.org/10.1371/journal.pone.0283147.t002
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Besides, alstonine also showed a dose-dependent and potent antipsychotic profile in mice

models [106]. Furthermore, other secondary metabolites like flavonoids and terpenoids also

contribute to antioxidant properties in plants [55,78]. Therefore, the collective effects of all the

newly annotated alkaloids of M. speciosa may be responsible for several aforementioned bio-

logical activities reported in M. speciosa leaf extracts [14,15,20–27].

In this study, although the young and mature leaves from the same M. speciosa tree shared

many similar metabolites (Fig 2), individual metabolites vary in abundance (S3 and S4 Tables;

Figs 4 and 6), suggesting that the metabolomics analysis of different leaf organs aids in deter-

mining the part with the most potent medicinal effects. Most of the annotated compounds

with notable biological activities like vomicine, hirsuteine, alstonine, akuammidine, and trypt-

amine are indole alkaloids, which showed a significant abundance in the young leaves (Table 1

and Fig 6), warranting further studies.

Conclusions

This study reports a comprehensive metabolome from young and mature leaves of M. speciosa
via LC-ESI-TOF-MS. In total, 86 metabolites were annotated as alkaloids, flavonoids, terpe-

noids, phenylpropanoids, carboxylic acid, glucoside, phenol, and phenolic aldehyde. Diverse

alkaloid profiles were also identified and classified into 14 subclasses, with 13 subclasses of

alkaloids that have not been reported in M. speciosa. These alkaloids are potentially associated

with the physiological and biochemical progressions during leaf maturity and plant defence

against herbivores, insects, and pathogens. Our findings support M. speciosa as a prominent

source of biologically active alkaloids, which can be potentially used for myriads of therapeutic

uses, including managing depression, cancer, and diabetes. Interestingly, this study also found

that young leaves contain more significantly abundant and medicinally beneficial alkaloids, all

of which have prominent bioactivities. Altogether, this work adds to our understanding of

metabolite composition in the young and mature leaves of M. speciosa, paving the way for

future identification of new biologically active compounds.
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